CRISPR: The New Tool In The Gene Editing Revolution Explained
CRISPR, or Clustered Regularly Interspaced Short Palindromic Repeats, is an integral part of a bacterial defense system. It is also the basis of the CRISPR-Cas9 system.
The CRISPR molecule is made up of short palindromic DNA sequences that are repeated along the molecule and are regularly-spaced. Between these sequences are “spacers”, foreign DNA sequences from organisms that have previously attacked the bacteria. The CRISPR molecule also includes CRISPR-associated genes, or Cas genes. These encode proteins that unwind DNA, and cut DNA, called helicases and nucleases, respectively.
The CRISPR immune system protects the bacteria from repeated virus attacks thru three steps:
1. Adaptation – When DNA from a virus invades the bacteria, the viral DNA is processed into short segments and is made into a new spacer between the repeats. These will serve as genetic memory of previous infections.
2. Production of CRISPR RNA – The CRISPR sequence undergoes transcription, including spacers and Cas genes, creating a single-stranded RNA. The resulting single-stranded RNA is called CRISPR RNA, which contains copies of the invading viral DNA sequence in its spacers.
3. Targeting – The CRISPR RNAs will identify viral DNA and guide the CRISPR-associated proteins to them. The protein then cleaves and destroys the targeted viral material.

CRISPR-Cas9 allows researchers to perform the following:
Gene Knock-Out
Gene silencing using CRISPR starts with the use of a single guide RNA (sgRNA) to target genes and initiate a double stranded break using the Cas9 endonuclease. These breaks are then repaired by an innate DNA repair mechanisms, the non-homologous end-joining (NHEJ). However, NHEJ is error-prone and results in genomic deletions or insertions, which then translates into permanent silencing of the target gene.
DNA-Free Gene Editing
CRISPR can be used for DNA-free gene editing without the use of DNA vectors, requiring only RNA or protein components. A DNA-free gene editing system can be a good choice to avoid the possibility of undesirable genetic alterations due to the plasmid DNA integrating at the cut site or random vector integrations.
Gene Insertions or “Knock-ins”
The CRISPR-induced double-strand break can also be used to create a gene “knock-ins” by exploiting the cells’ homology-directed repair. The precise insertion of a donor template can alter the coding region of a gene. Previous studies have demonstrated that single-stranded DNA can be used to create precise insertions using CRISPR-Cas9 system.
Transient Gene Silencing
By modifying the Cas9 protein so it cannot cut DNA, transient gene silencing or transcriptional repression can also be done. The modified Cas9, led by a guide RNA, targets the promoter region of a gene and reduces transcriptional activity and gene expression. Transient activation or upregulation of specific genes can be effectively done.
For more info, get sample copy of this study here
References:
- isaaa.org
- Image Source : curethefuture.org
- theinsightpartners.com

